

Volume 13, Number 8—August 2009 R. Lebeau, Enhanced RTTI in C++Builder 2010, Part I: Introduction

ISSN 1093-2097 2 C++Builder Developer’s Journal

mbarcadero’s recently released RAD Studio
2010 contains many new features and produc-
tivity enhancements throughout the IDE, code

editor, RTL/VCL, and compilers. In this article, I will
describe a new feature that many long-time customers
have been requesting for a very long time—more de-
tailed VCL-based RTTI (Run-Type Type Information)
emitted by the Delphi and C++ compilers (this does
not cover C++-specific RTTI, which is a whole differ-
ent type of RTTI altogether, and is dictated by the C++
language standards).

Foreword
Before I continue, I need to first point out a couple of
very important issues that are present in the initial
RTM release of C++Builder 2010. At the time of this
writing, only the Delphi 2010 compiler can actually
emit Enhanced RTTI data. There is no equivalent in
the C++ compiler for generating Enhanced RTTI data,
however C++ code can consume the Enhanced RTTI
data that is generated by Delphi. Also, there are a
number of bugs in the new Enhanced RTTI system
when used in C++, several of which have been logged
in Quality Central so far [1]-[4].
 For the rest of this article, I am going to describe
how the new Enhanced RTTI is supposed to be used,
and describe what does and does not actually work.
Embarcadero is planning to release an Update Pack
for RAD Studio 2010 soon; several of the issues have
been marked as needing fixes in that Update Pack.

What is Enhanced RTTI?
Delphi 2010 and C++Builder 2010 introduce a new
Enhanced RTTI system that compliments the older
RTTI system used in past versions. The older RTTI is
accessed using functions and structure types that are

implemented in the TypInfo unit (TYPINFO.PAS in
Delphi, TYPINFO.HPP in C++). The new Enhanced
RTTI system is implemented as an object-oriented
class hierarchy in a new Rtti unit (RTTI.PAS in Delphi,
RTTI.HPP in C++).
 The new Rtti unit does not (yet?) replace the Ty-
pInfo unit, but rather builds upon it. Two of the main
structures in the Rtti unit—TRttiType and TValue—
provide access to PTypeInfo and PTypeData pointers
from the TypInfo unit. The TypInfo RTTI is still used
for things like DFM streaming and such.
 In addition to the functionality already present in
the TypInfo unit, the Rtii unit provides additional
functionality for obtaining more detailed information
about runtime packages and the types that are im-
plemented within them, including unit-scoped enu-
merations, sets, and records, not just classes. It also
provides some basic typecasting of values from one
type to another compatible type.
 Where the Rtti unit really shines though, is where
the TypInfo unit has always lacked—Enhanced RTTI
data can be generated for non-published fields, me-
thods, and properties! You can even invoke methods
on object instances via Enhanced RTTI, as it contains
information about the calling conventions, parameter
lists, and return types involved. A dispatch mechan-
ism is provided that allows you to specify values for
those fields when invoking methods.
 Basically, if the compiler can compile something,
there is a good chance you can access it via Enhanced
RTTI now.
 To emit Enhanced RTTI data, two new directives
have been added to the Delphi compiler: {$RTTI} and

E

Enhanced RTTI in
C++Builder 2010,
Part I: Introduction
By Remy Lebeau

Versions: C++Builder 2010

R. Lebeau, Enhanced RTTI in C++Builder 2010, Part I: Introduction Volume 13, Number 8—August 2009

C++Builder Developer’s Journal 3 www.bcbjournal.com

{$WEAKLINKRTTI}. In addition, a new Attributes syn-
tax has been added to the Delphi Pascal language it-
self (well, more accurately, the .NET-style Attributes
syntax found in earlier Delphi.NET versions appears
to have now been implemented in Delphi for Win32)
to allow developers to include their own custom data
in a type’s Enhanced RTTI.
 Use of both compiler directives and the Attributes
syntax are fully documented in RAD Studio 2010’s
Help system, so I will not cover them.

Establishing an RTTI context
To access the new Enhanced RTTI in your code, you
start by instantiating an instance of the TRttiContext
structure. This is the only publicly accessible gateway
into the rest of the RTTI system. It manages all of the
memory and reference counts on any objects that need
to be internally allocated while accessing the RTTI
data. Do not free any of these objects yourself. Inter-
nally, TRttiContext delegates to a private TRttiPool
singleton object that owns everything.
 Embarcadero’s documentation says to use the
static TRttiContext::Create() method to initialize a
new TRttiContext instance, and then call the TRtti-
Context::Free() method when you’re done using it:

#include <Rtti.hpp>
{
 TRttiContext ctx = TRttiContext::Create();
 // use ctx as needed ...
 ctx.Free();
}

 TRttiContext contains a single data member—
FContextToken—that is an IInterface pointer to a
TPoolToken interfaced object, which ensures the
TRttiPool singleton object remains available for the
lifetime of the TRttiContext instance. TRttiCon-
text::Create() returns a new TRttiContext in-
stance whose FContextToken member is initialized to
NULL. The TPoolToken object is created on an as-
needed basis afterwards.
 TRttiContext is a plain structure, not a TObject
descendant (several other types in the Rtti unit are
TObject descendants, however). As such, it does not
need to be allocated on the heap, and its Free() me-
thod merely releases the FContextToken member— it
does not actually free the memory for the TRttiCon-
text instance itself. If no references to the TRttiPool
singleton remain, the pool is freed as well, releasing
all of its internally allocated data.

Bug #1
TRttiContext::Create() returns a new TRttiCon-
text instance by value, not by reference or pointer.
When a function returns a structure or class by value,
the compiler creates a temporary instance in memory
and passes it to the function via a hidden input para-
meter for the function to fill in as needed. However, a
bug in the C++ compiler at this time [3][4] causes
TRttiContext::Create() to always throw an EAc-
cessViolation exception in the RTL’s _IntfClear()
function. The temporary TRttiContext instance that
is used for the return value of TRttiCon-

text::Create() is not initialized at all, causing the
FContextToken member to contain whatever random
value was previously stored in that memory space
beforehand. If that value is not zero, _IntfClear()
ends up trying to decrement a reference count on a
non-existent interfaced object and crashes.

Fortunately, there is a simple workaround—
declare the TRttiContext variable without calling
Create() at all:

#include <Rtti.hpp>
{
 TRttiContext ctx;
 // use ctx as needed ...
 ctx.Free();
}

The reason this works is because TRttiContext’s data
member is a Delphi interface pointer. In C++, Delphi
interface pointers are always wrapped inside a Del-
phiInterface-based smart wrapper class (in this
case, by the _di_IInterface class). The various Del-
phiInterface constructors initialize the interface
pointer to NULL, which makes calling TRttiContext::
Create() redundant even if it functioned correctly.

Fortunately, TRttiContext::Free() is safe to call
in C++. But, it is also redundant as it merely releases
the FContextToken interface pointer, which is the
same thing done by the DelphiInterface destructor.

The previous example can thus be simplified to
the following, at least for the time being:

#include <Rtti.hpp>
{
 TRttiContext ctx;
 // use ctx as needed ...
}

Nobody seems to know why Embarcadero decided to
introduce the Create() and Free() methods in
TRttiContext. They accomplish the same thing that

Volume 13, Number 8—August 2009 R. Lebeau, Enhanced RTTI in C++Builder 2010, Part I: Introduction

ISSN 1093-2097 4 C++Builder Developer’s Journal

the Delphi and C++ compilers are supposed to be
doing natively, as Delphi interface pointers are a ma-
naged data type in both environments.

RTTI context methods
Once you have a valid TRttiContext instance to
work with, you have access to the following five pub-
lic methods:

TRttiType* __fastcall
 GetType(void *ATypeInfo);

TRttiType* __fastcall
 GetType(System::TClass AClass);

System::TArray__1<TRttiType*> __fastcall
 GetTypes(void);

TRttiType* __fastcall FindType(
 const System::UnicodeString
 AQualifiedName);

System::TArray__1<TRttiPackage*>
 __fastcall GetPackages(void);

// NOTE: System::TArray_1 is just an alias
// for the System::DynamicArray class.

The first overloaded version of TRttiCon-

text::GetType() allows you to pass in a PTypeInfo
pointer from the TypInfo unit. TRttiCon-

text::GetType() will locate information about the
package/module that owns the RTTI being pointed at
by the PTypeInfo, wrap everything in a TRttiType
object, and cache it in the TRttiPool singleton object.
 The second overloaded version of TRttiCon-
text::GetType() does the same thing, except for a
class metadata reference instead, such as from the re-
turn value of the TObject::ClassType() method or
the C++ compiler’s __classid() keyword.
 The TRttiContext::GetTypes() method re-
trieves an array of TRttiType objects of all top-level
data types from all loaded packages/modules that
provide RTTI information. Newly allocated objects are
cached in the TRttiPool singleton object as needed.
 The TRttiContext::FindType() method takes a
fully qualified name of a public type and returns a
pointer to its TRttiType object (the qualified name
must be expressed in Delphi-style dot notation—a
unit name followed by a “.” character followed by the
type name. Do not specify qualified names using
C++’s “::” notation). If the type is not found, a NULL
pointer is returned.
 The TRttiContext::GetPackages() method re-
trieves an array of TRttiPackage objects of all loaded

packages that provide RTTI information. Newly allo-
cated objects are cached as needed.

Bug #2
Both overloaded versions of the TRttiCon-

text::GetType() method throw an EAccessViola-
tion exception in the private TRttiPool::GetType()
method if the “Build with Runtime Packages” setting
is disabled in the Project Options [2]. Internally,
TRttiPool::GetType() calls the private TRtti-

Pool::GetPackagesList() method, which returns a
NULL pointer that TRttiPool::GetType() does not
handle correctly. The TRttiPool::GetPackages-

List() method returns a NULL pointer because pack-
age type information is not emitted correctly by the
C++ linker [1], which prevents all package RTTI in-
formation from being correctly located at runtime,
even for Delphi-written packages.

The only current workaround for this bug is to
enable the “Build with Runtime Packages” option;
then everything works as expected. Because of this,
you are best-off waiting for Embarcadero to release
bug fixes before releasing any production-level code
based on this new Enhanced RTTI system.

Conclusions
In this article, I have described the basics of accessing
the top-level objects of the new Enhanced RTTI sys-
tem. In the next article, I will delve further into the
kinds of RTTI data and functionality that the TRtti-
Type and TRttiPackage objects expose.

Contact Remy at remy@lebeausoftware.org.

References
1. QC #76875, “InitContext.PackageTypeInfo

shouldn't be 0 in a C++ module,”
http://qc.embarcadero.com/wc/qcmain.aspx?d=76875

2. QC #76877, “AV in TRttiContext::GetType() when

Runtime Packages are disabled,”
http://qc.embarcadero.com/wc/qcmain.aspx?d=76877

3. QC #77431, “AV in TRttiContext::Create(),”
http://qc.codegear.com/wc/qcmain.aspx?d=77431

4. QC #77436, “AV when a Delphi record containing

managed data types is used as a function Result,”
http://qc.codegear.com/wc/qcmain.aspx?d=77436

