

Volume 10, Number 9—September 2006 Lebeau, Using Microsoft’s Auto-Completion Framework

ISSN 1093-2097 2 C++Builder Developer’s Journal

n the July 2002 issue of the Journal, Damon Chan-

dler showed how to write a custom TEdit descen-

dant component that manually displays a popup

TListBox which contains suggested string values that

can be used to complete the partial string that the user

has typed in [1]. In this article, I will describe a more

robust and flexible way to accomplish the same thing,

using a feature that has been built in to the Windows

OS for several years now—the IAutoComplete inter-

face.

What is auto-completion?
According to MSDN, auto-completion is defined as

follows:

 “Autocompletion expands strings that have been

partially entered in an edit control into complete

strings. For example, when a user starts to enter a

URL in the Address edit control that is embedded in

the Microsoft Internet Explorer toolbar, autocomple-

tion expands the string into one or more complete

URLs that are consistent with the existing partial

string. A partial URL string such as "mic" might be

expanded to "http://www.microsoft.com" or

"http://www.microsoft.com/windows". Autocom-

pletion is typically used with edit controls or with

controls that have an embedded edit control such as

the comboboxex control.” [2]

MSDN also states that the IAutoComplete inter-

face was introduced in SHELL32.DLL v5.0 and re-

quires Windows 2000 or later. However, on a Win-

dows 98 machine of mine, I have SHELL32.DLL v4.72

installed, and yet the auto-completion functionality is

available and works. Looking in the Windows Regis-

try, I found that the IAutoComplete interface (and

related interfaces that will also be described in this

article) is actually implemented in BROWSEUI.DLL

v6.0. I do have Internet Explorer 6.0 installed on that

machine, so it would appear that Microsoft moved its

auto-completion system around in later versions of

Internet Explorer and simply did not update their

documentation accordingly. In any case, it is probably

safe to assume that if a particular machine has Inter-

net Explorer 5.0 or later installed, then the IAutoCom-

plete interface is going to be available for your appli-

cation to use. Internet Explorer 5.0 (or later) is prein-

stalled on all Windows 98/2000 and later systems,

and can be downloaded for free for Windows

95/NT4.

Why use IAutoComplete?
Before Microsoft introduced the IAutoComplete inter-

face, if an application wanted to have a UI that pro-

vided auto-completion options to the user, it would

have to manually subclass an edit control in order to

intercept the user’s keystrokes, and it would have to

do all of the management of the popup list-box and its

contents—much like Damon demonstrated in his ear-

lier article.

 With the introduction of IAutoComplete, many of

those details are now handled automatically for you

by the Windows OS itself. Simply pass the HWND han-

I

Using Microsoft’s

Auto-Completion

Framework
By Remy Lebeau

Lebeau, Using Microsoft’s Auto-Completion Framework Volume 10, Number 9—September 2006

C++Builder Developer’s Journal 3 www.bcbjournal.com

dle of the desired edit control to IAutoComplete and

everything is hooked up for you automatically. In ad-

dition, IAutoComplete offers some extra features that

may be of interest to you:

• Suggested values can be populated with items

from the File System, Internet Explorer’s History

and Favorites, the user’s Recent Documents, the

Shell Namespace, and even user-defined string

lists. Any or all of these sources can be enabled at

one time.

• Suggested values can be displayed using a

popup list, or appended to the end of the edit

control’s current text, or both.

• A search engine can be invoked via a “Search”

item that IAutoComplete can optionally append

to each popup list that it displays.

• Quick completion of the user’s typed-in partial

strings via a hot key keystroke that invokes a

pre-defined format string.

• RTL (Right-to-left) support for foreign systems,

such as Hebrew and Arabic.

IAutoComplete in detail
Microsoft’s auto-completion system is actually com-

prised of several ActiveX objects that work together.

This allows you to pick-and-choose the features that

you want to use in your application without taking up

unnecessary resources.

The IAutoComplete interface works quite well for

anything that exposes access to the HWND of a standard

edit control, such as combo-box controls. The code

provided with this article will show you how to wrap

the main processing code into a generic, reusable class

named TAutoComplete, as well as how to derive new

components from TEdit and TComboBox to demon-

strate how the class can be used.

NOTE: The Win32 API headers that Borland ships

with each new IDE release tend to be dated. I will

provide all relevant declarations in this article so that

you can add them to your code if they are not already

available in your version.

A first look at auto-completion
The simplest way to use auto-completion is to call the

SHAutoComplete() function:

HRESULT STDAPICALLTYPE SHAutoComplete(

 HWND hwndEdit, DWORD dwFlags);

This function was introduced in SHLWAPI.DLL of

Internet Explorer 5.0 and is declared in SHLWAPI.H.

If you do not plan to do anything very complex with

auto-completion in your code, it will probably suit

your needs by itself, for example:

SHAutoComplete(hEditWnd, SHACF_FILESYSTEM);

This is a simple wrapper for the IAutoComplete inter-

face and thus offers access to only a small subset of

Table 1: Table 1: Table 1: Table 1: SHAutoComplete() options

Setting Value Description
SHACF_AUTOSUGGEST_FORCE_ON 0x10000000 Ignore the registry value and force the AutoSuggest feature on.
SHACF_AUTOSUGGEST_FORCE_OFF 0x20000000 Ignore the registry default and force the AutoSuggest feature off.
SHACF_AUTOAPPEND_FORCE_ON 0x40000000 Ignore the registry value and force the AutoAppend feature on.
SHACF_AUTOAPPEND_FORCE_OFF 0x80000000 Ignore the registry default and force the AutoAppend feature off.
SHACF_DEFAULT 0 The default setting, equivalent to SHACF_FILESYSTEM | SHACF_URLALL.
SHACF_FILESYSTEM 1 Include the file system.
SHACF_URLHISTORY 2 Include the URLs in the user's History list.

SHACF_URLMRU 4 Include the URLs in the user's Recently Used list.

SHACF_URLALL 6
Include the URLs in the users History and Recently Used lists. Equiva-
lent to SHACF_URLHISTORY | SHACF_URLMRU.

SHACF_USETAB 8
Allow the user to select from the autosuggest list by pressing the TAB
key.

SHACF_FILESYS_ONLY 16
Include the file system as in SHACF_FILESYS_ONLY plus directories, Uni-
versal Naming Convention (UNC) servers, and UNC server shares.

SHACF_FILESYS_DIRS 32
Indicates that the file system directories, UNC shares, and UNC servers
should be enumerated.

Volume 10, Number 9—September 2006 Lebeau, Using Microsoft’s Auto-Completion Framework

ISSN 1093-2097 4 C++Builder Developer’s Journal

the available functionality. Table 1 shows the avail-

able flag values at the time of this writing. I mention

the function here only for the sake of completeness.

For the rest of this article, I will focus on working with

IAutoComplete and its related interfaces directly. If

you are not familiar with working with ActiveX ob-

jects and interfaces, then I suggest you read up on that

separately before continuing with this article.

 Like other ActiveX objects, you have to obtain the

IAutoComplete interface by calling the CoCreateIn-

stance() function to instantiate an instance of its cor-

responding object, for example:

IAutoComplete *pAutoComplete;

::CoCreateInstance(

CLSID_AutoComplete,

NULL,

CLSCTX_INPROC_SERVER,

IID_IAutoComplete,

(LPVOID*) &pAutoComplete);

CLSID_AutoComplete and IAutoComplete, which are

shown in Listing A, are declared in SHLGUID.H and

SHLDISP.H, respectively. The other related interfaces,

and their supporting flag values, are declared in

SHLOBJ.H and OBJIDL.H. All you need to include in

your own code is SHLOBJ.H, which includes all of the

other header files.

NOTE: under C++Builder 5.0 or later, if you get

“multiple declaration” errors from the shell header

files during compiling, you will need to add

NO_WIN32_LEAN_AND_MEAN to the Conditionals list of

your Project Options in order for the code to compile

properly. C++Builder 4.0 and earlier do not suffer

from this problem. At the time of this writing, Borland

has yet to fix this issue.

The Quick Completion feature
The Init() method of the IAutoComplete interface

has two parameters that can specify the format string

to be used for the “Quick Completion” feature. The

format string behaves exactly like the format string of

the C language runtime’s printf() family of func-

tions. When the user presses CTRL+ENTER in the edit

control, the format string is applied to the edit control,

where the current text is the value for the associated

parameter of the format string. For example, if the

format string is "http://www.%s.com", and the user

types in "bcbjournal" and then presses CTRL+ENTER,

the edit control will be updated to contain

"http://www.bcbjournal.com" as its new value.

If the format string is stored in the Windows Reg-

istry, use the pwszRegKeyPath parameter of the

Init() method, specifying both the key name and the

value name. On the other hand, if the format string is

in a null-terminated string in memory, then use the

pwszQuickComplete parameter instead. For example:

// Registry

pAutoComplete->Init(hEditWnd, pUnk, NULL,

 L“Software\\MyKey\\MyFormatValue”);

// Null-terminated string

pAutoComplete->Init(hEditWnd, pUnk,

 L"http://www.%s.com", NULL);

Auto completion sources
In order for the IAutoComplete interface to actually

do anything, it needs to know the types of items that

are to be displayed to the user. IAutoComplete itself

does not generate the actual suggestions that the user

sees. Other ActiveX objects that work in conjunction

with IAutoComplete will provide the appropriate

strings while the user is typing in the edit control.

Any source that you use must implement the IEnum-

String interface, and optionally the IACList inter-

face. Microsoft provides three ready-made objects:

1. CLSID_ACLHistory provides items from

Internet Explorer’s History list.

2. CLSID_ACLMRU provides items from the user's

Recently Used Documents list.

Listing A:Listing A:Listing A:Listing A: IAutoComplete

DEFINE_GUID(CLSID_AutoComplete,

0x00BB2763L, 0x6A77, 0x11D0, 0xA5, 0x35,

0x00, 0xC0, 0x4F, 0xD7, 0xD0, 0x62);

MIDL_INTERFACE("00bb2762-6a77-11d0-a535-

00c04fd7d062")

IAutoComplete : publicpublicpublicpublic IUnknown

{

public:public:public:public:

 virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE Init(

 HWND hwndEdit, IUnknown *punkACL,

 LPCOLESTR pwszRegKeyPath,

 LPCOLESTR pwszQuickComplete) = 0;

virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE

 Enable(BOOL fEnable) = 0;

};

Lebeau, Using Microsoft’s Auto-Completion Framework Volume 10, Number 9—September 2006

C++Builder Developer’s Journal 5 www.bcbjournal.com

3. CLSID_ACListISF provides items from the

Shell namespace, including folders and files

from the file system, as well as items from vir-

tual folders such as My Computer and Con-

trol Panel.

Whenever IAutoComplete needs to provide the

user with suggestions from a source, it enumerates

through the IEnumString interface, shown in Listing

B, to retrieve all of the available strings, which are

then filtered as needed. IACList, shown in Listing C,

is implemented whenever a source object can provide

strings in a hierarchical manner (which all three of

Microsoft’s sources can). When the user begins typing

into the edit control, only the matching items of the

top level of the hierarchy are shown. When the user

then types in a path delimiter, the current text of the

edit control is passed to the Expand() method of IA-

CList. This way, the source can update itself so that

IEnumString will return the strings for the newly ex-

panded level of the hierarchy from that point on-

wards. This approach allows IAutoComplete to effi-

ciently show suggestions for very large hierarchies.

To use one of Microsoft’s pre-made sources in

your code, call CoCreateInstance() to instantiate an

instance of its object, and then pass its IUnknown inter-

face pointer to the Init() method of IAutoComplete;

for example:

IACList *pIFS;

::CoCreateInstance(

CLSID_ACListIFS, NULL,

CLSCTX_INPROC_SERVER,

IID_IACList, (LPVOID*) &pIFS);

pAutoComplete->Init(

 hEditWnd, pIFS, NULL, NULL);

You can implement your own ActiveX objects to

provide custom string lists during auto-completion

operations. The code provided with this article will

show you how the TAutoComplete class implements

some of its functionality using a custom ActiveX ob-

ject to allow user-defined strings to be suggested.

Multiple auto-completion sources
The IUnknown interface for a single object that will

provide all of the strings must be passed to the

Init() method of IAutoComplete. If you are using

only one source for your items, as shown in the ex-

ample above, then you need only one object of the

desired type. However, as I mentioned earlier, it is

also possible to enable multiple sources at one time.

Listing D shows another one of Microsoft’s pre-made

objects, CLSID_ACLMulti, which implements the

Listing C:Listing C:Listing C:Listing C: IACList

DEFINE_GUID(IID_IACList, 0x77A130B0L,

0x94FD, 0x11D0, 0xA5, 0x44, 0x00, 0xC0,

0x4F, 0xD7, 0xd0, 0x62);

classclassclassclass IACList : publicpublicpublicpublic IUnknown

{

public:public:public:public:

 virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE Expand(

 LPCOLESTR pszExpand) = 0;

};

Listing Listing Listing Listing BBBB:::: IEnumString

MIDL_INTERFACE("00000101-0000-0000-C000-

000000000046")

IEnumString : publicpublicpublicpublic IUnknown

{

public:public:public:public:

virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE Next(

 ULONG celt, LPOLESTR *rgelt,

 ULONG *pceltFetched) = 0;

 virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE Skip(

 ULONG celt) = 0;

virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE Reset()

 = 0;

 virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE Clone(

 IEnumString **ppenum) = 0;

};

Listing D:Listing D:Listing D:Listing D: IObjMgr

DEFINE_GUID(CLSID_ACLMulti, 0x00BB2765L,

0x6A77, 0x11D0, 0xA5, 0x35, 0x00, 0xC0,

0x4F, 0xD7, 0xD0, 0x62);

DEFINE_GUID(IID_IObjMgr, 0x00BB2761L,

0x6A77, 0x11D0, 0xA5, 0x35, 0x00, 0xC0,

0x4F, 0xD7, 0xD0, 0x62);

classclassclassclass IObjMgr : publicpublicpublicpublic IUnknown

{

public:public:public:public:

virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE

 Append(IUnknown *punk) = 0;

virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE

 Remove(IUnknown *punk) = 0;

};

Volume 10, Number 9—September 2006 Lebeau, Using Microsoft’s Auto-Completion Framework

ISSN 1093-2097 6 C++Builder Developer’s Journal

IObjMgr interface for this purpose.

In order to use multiple sources, you have to cre-

ate an instance of the manager object and then call the

Append() method of its IObjMgr interface for each

source that you want to use. You can then pass the

IUnknown interface pointer of IObjMgr to IAutoCom-

plete, for example:

IACList *pMRU, *pIFS;

IObjMgr *pMgr;

::CoCreateInstance(

 CLSID_ACLMRU, NULL,

 CLSCTX_INPROC_SERVER, IID_IACList,

 (LPVOID*) &pMRU);

::CoCreateInstance(

 CLSID_ACListIFS, NULL,

 CLSCTX_INPROC_SERVER, IID_IACList,

 (LPVOID*) &pIFS);

::CoCreateInstance(

 CLSID_ACLMulti, NULL,

 CLSCTX_INPROC_SERVER, IID_IObjMgr,

 (LPVOID*) &pMgr);

pMgr->Append(pMRU);

pMgr->Append(pISF);

pAutoComplete->Init(

 hEditWnd, pMgr, NULL, NULL);

The IEnumString implementation of the

CLSID_ACLMulti object will consolidate and merge

the results of all the sources into a single list when

needed by IAutoComplete.

The auto-suggest drop-down list
The IAutoCompleteDropDown interface, shown in

Listing E, is obtained by calling QueryInterface()

on the IAutoComplete interface. This interface allows

the user to query the current state of the auto-suggest

popup list, and to reset the current IEnumString

enumerator while the auto-suggest list is visible; for

example:

IAutoCompleteDropDown pDropDown;

DWORD dwFlags = 0;

pAutoComplete->QueryInterface(

 IID_IAutoCompleteDropDown,

 (LPVOID*) &pDropDown);

pDropDown->GetDropDownStatus(

 &dwFlags, NULL);

ifififif(dwFlags & ACDD_VISIBLE)

pDropDown->ResetEnumerator();

Configuring auto-completion

behavior
The rest of the available options for IAutoComplete

are configured via the IAutoComplete2 and IACList2

interfaces, shown in Listing F and Listing G, which

are obtained by calling the QueryInterface()

method of IAutoComplete and IACList, respectively.

The SetOptions() method of IAutoComplete2

specifies how the results are displayed to the user,

and how the edit control responds to certain user key-

strokes; for example:

Listing Listing Listing Listing FFFF:::: IAutoComplete2

MIDL_INTERFACE("EAC04BC0-3791-11d2-BB95-

0060977B464C")

IAutoComplete2 : publicpublicpublicpublic IAutoComplete

{

public:public:public:public:

virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE

 SetOptions(DWORD dwFlag) = 0;

virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE

 GetOptions(DWORD *pdwFlag) = 0;

};

Listing Listing Listing Listing EEEE:::: IAutoCompleteDropDown

MIDL_INTERFACE("3CD141F4-3C6A-11d2-BCAA-

00C04FD929DB")

IAutoCompleteDropDown : publicpublicpublicpublic IUnknown

{

public:public:public:public:

virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE

 GetDropDownStatus(DWORD *pdwFlags,

 LPWSTR *ppwszString) = 0;

virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE

 ResetEnumerator() = 0;

};

Listing Listing Listing Listing GGGG:::: IACList2

DEFINE_GUID(IID_IACList2, 0x470141a0L,

0x5186, 0x11d2, 0xbb, 0xb6, 0x00, 0x60,

0x97, 0x7b, 0x46, 0x4c);

classclassclassclass IACList2 : publicpublicpublicpublic IACList

{

public:public:public:public:

virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE

 SetOptions(DWORD dwFlag) = 0;

 virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE

 GetOptions(DWORD* pdwFlag) = 0;

};

Lebeau, Using Microsoft’s Auto-Completion Framework Volume 10, Number 9—September 2006

C++Builder Developer’s Journal 7 www.bcbjournal.com

IAutoComplete2 *pAC2;

pAutoComplete->QueryInterface(

 IID_IAutoComplete2, (LPVOID*) &pAC2);

pAC2->SetOptions(ACO_AUTOSUGGEST);

The SetOptions() method of IACList2, on the other

hand, specifies what kind of system resources are in-

cluded in the results. The CLSID_ACListISF object is

currently the only Microsoft object that uses IA-

CList2, to specify what kind of file system items are

to be used; for example:

IACList2 *pACL2;

pIFS->QueryInterface(

 IID_IACList2, (LPVOID*) &pACL2);

pACL2->SetOptions(ACLO_FILESYSDIRS);

The available flag values for both interfaces at the

time of this writing are provided in Table 2 and Table

3 located at the end of this article.

Current working directories
The ACLO_CURRENTDIR option of the IACList2 inter-

face requires some further explanation. Because the

path of a file system item can be specified relative to a

parent item, by using the “..” path notation, the

IAutoComplete interface needs to be told what parent

item to actually use when resolving relative paths

from the user’s input. IAutoComplete exposes two

additional interfaces for this purpose.

The ICurrentWorkingDirectory interface,

shown in Listing H, accepts the parent item as a Uni-

code string. Because a string is used, this interface is

useful only for physical paths on the file system, for

example:

pAC->QueryInterface(

IID_ICurrentWorkingDirectory,

(LPVOID*) &pCWD);

pCWD->SetDirectory(L”C:\\”);

The IPersistFolder interface, shown in Listing

I, accepts the parent item as an absolute ITEMIDLIST

instead, relative to the root folder of the Shell name-

space; for example:

IPersistFolder *pFolder;

LPITEMIDLIST pidl;

SHGetSpecialFolderLocation(

 NULL, CSIDL_CONTROLS, &pidl);

pAutoComplete->QueryInterface(

 IID_IPersistFolder, (LPVOID*) &pFolder);

pFolder->Initialize(pidl);

CoTaskMemFree(pidl);

IPersistFolder is more flexible then ICurrentWork-

ingDirectory because any item within the Shell

namespace can be represented by an ITEMIDLIST.

That includes not only physical paths on the file sys-

tem, but also virtual folders, such as My Computer or

the Control Panel, and items within virtual folders.

The TUserStringsEnum class
As I mentioned earlier, the IAutoComplete interface

receives its string values from the IEnumString inter-

face. By writing a custom ActiveX object that imple-

ments that interface, you can provide your own string

values to IAutoComplete. The TUserStringsEnum

class uses this approach to trigger OnExpand and On-

Listing H:Listing H:Listing H:Listing H: ICurrentWorkingDirectory

DEFINE_GUID(IID_ICurrentWorkingDirectory,

0x91956d21L, 0x9276, 0x11d1, 0x92, 0x1a,

0x00, 0x60, 0x97, 0xdf, 0x5b, 0xd4);

classclassclassclass ICurrentWorkingDirectory :

 publicpublicpublicpublic IUnknown

{

public:public:public:public:

virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE

 GetDirectory(LPWSTR pwzPath,

 DWORD cchSize) = 0;

virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE

 SetDirectory(LPCWSTR pwzPath) = 0;

};

Listing I:Listing I:Listing I:Listing I: IPersistFolder

DEFINE_GUID(IID_IPersistFolder,

0x000214EAL, 0x0000, 0x0000, 0xC0, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x46);

classclassclassclass IPersistFolder : publicpublicpublicpublic IPersist

{

public:public:public:public:

virtualvirtualvirtualvirtual HRESULT STDMETHODCALLTYPE

 Initialize(LPCITEMIDLIST pidl) = 0;

};

Volume 10, Number 9—September 2006 Lebeau, Using Microsoft’s Auto-Completion Framework

ISSN 1093-2097 8 C++Builder Developer’s Journal

GetItem events in the TAutoComplete class. This way,

users can implement their own storage for their cus-

tom strings. As you’ll see in this month’s code, TUser-

StringsEnum is a fairly straightforward class. It has

the standard IUnknown methods for reference count-

ing and interface querying, the standard IEnumXXX

methods for enumerating strings, and the IACList

methods for handling hierarchies.

TUserStringsEnum implementation

notes
If you are familiar with writing custom ActiveX ob-

jects, one thing you will probably notice is that I am

not deriving the TUserStringsEnum class from any

pre-made ATL classes. There are four reasons for this.

First, IEnumString and IACList derive directly

from IUnknown, and the ATL does not provide any

wrapper class to handle the implementation for IUn-

known itself, so it is not worth separating out that

functionality into an additional class for the purpose

of this article.

Second, because this class has a very simply de-

sign, and is private to TAutoComplete only, there is

no need for the extra features like interface maps and

the like that would have to be added to it to satisfy the

ATL design model.

Third, although there are pre-made third-party

IEnumString implementations available, they usually

are implemented with STL containers that make cop-

ies of the string values for each object instance. For

this class, I do not want to copy the user’s strings

around memory unnecessarily. Since there is no way

to know where the user’s strings are actually coming

from, I want the TUserStringsEnum class to allow the

user to optimize the access as desired.

Lastly, because the IEnumXXX interface design in-

cludes a Clone() method, TUserStringsEnum needs

to be able to copy the enumeration values from one

instance of itself to another. The purpose of cloning an

enumerator is to maintain separate indices to the same

source list. So there is no need to make copies of the

user’s strings in this situation either.

IEnumString implementation notes
The Next() method of the IEnumString interface is

what actually retrieves one or more strings from the

list. The calling code passes in an array of OLESTR

pointers, and the number of strings needed. Next() is

responsible for allocating a copy of the available

strings, up to the number requested, and placing their

memory pointers into the array.

 Some people get confused when it comes to the

memory allocation rules for ActiveX objects. In a nut-

shell, any method that returns data to the calling code

must allocate the data, and then the calling code is

responsible for freeing it later on. Unless otherwise

indicated by the object’s author, the data have to be

allocated using ActiveX’s own memory manager,

which is the IMalloc interface, to ensure proper mar-

shaling when the data pass across thread/process

boundaries. For this article, the allocated data will not

be crossing those boundaries; however, the ActiveX

memory manager is still being used. I am using the

CoTaskMemAlloc() function to keep the code simple,

but the CoGetMalloc() function can instead be used

to access the IMalloc interface directly, if desired.

The TAutoComplete class
Now that all of the options have been described, it is

time to finally put the TAutoComplete class to work in

your code. Upon examining the code that accompa-

nies this article, you’ll notice that the TAutoComplete

class derives from TPersistent instead of TCompo-

nent. There, TAutoComplete is being embedded in-

side of other components, but you can use it as a

standalone object if you desire.

 By assigning an event handler to the OnGetItem

and OnGetItemCount events, the TUserStringsEnum

class will be used as one of the auto-completion

sources (the Sources property specifies which, if any,

of Microsoft’s source objects will be used as well).

While the user is typing in the edit control, IAutoCom-

plete will call into the IACList and IEnumString

interfaces of the TUserStringsEnum class, which will

then trigger the OnExpand, OnGetItem, and On-

GetItemCount events as needed.

 With everything said and done, all that is needed

to hook up the TAutoComplete class to your own code

is the following:

1. Create an instance of TAutoComplete, such as in

a constructor (and freed in the destructor).

2. Optionally set the Sources property. If you en-

able the acIFS flag, then set up the IFSOptions

property as desired.

3. Assign OnGetItem and OnGetItemCount event

Lebeau, Using Microsoft’s Auto-Completion Framework Volume 10, Number 9—September 2006

C++Builder Developer’s Journal 9 www.bcbjournal.com

handlers if you wish to provide your own string

values from an external source. Optionally, also

assign an OnExpand event handler if your string

values are organized in a hierarchy.

4. Keep the EditHandle property up-to-date.

Take special note of Step 4 above. VCL controls are

notorious for destroying and recreating their window

handles internally when their properties are changed

during the life of the control. This can even happen

multiple times. The IAutoComplete interface cannot

do anything without a valid HWND assigned to it. If you

use the TAutoComplete class inside of a TWinControl-

derived component, then you should override the

component’s CreateWnd() and DestroyWnd() meth-

ods to keep the TAutoComplete object‘s EditHandle

property in sync with the component’s current Handle

value.

Conclusions
Refer to the code that is provided with this article to

see the complete implementation code. I hope you

will find it useful for your projects.

Contact Remy at remy@lebeausoftware.org.

References
1. D. Chandler, “Auto-complete edit controls,”

C++Builder Dev. Journal, 6 (7), 2002.

2. Microsoft, “Using AutoComplete,”

http://tinyurl.com/l6xbh

Table 2: Table 2: Table 2: Table 2: IAutoComplete2 options

Setting Value Description
ACO_NONE 0 Do not auto-complete.
ACO_AUTOSUGGEST 1 Enable the auto-suggest drop-down list.
ACO_AUTOAPPEND 2 Enable auto-append.

ACO_SEARCH 4
Add a search item to the list of completed strings. When the user selects this item, it launches a
search engine.

ACO_FILTERPREFIXES 8 Do not match common prefixes, such as "www." or “http://”.
ACO_USETAB 16 Use the TAB key to select an item from the drop-down list.
ACO_UPDOWNKEYDROPSLIST 32 Use the UP ARROW and DOWN ARROW keys to display the auto-suggest drop-down list.

ACO_RTLREADING 64

Normal windows display text left-to-right (LTR). Windows can be mirrored to display lan-
guages such as Hebrew or Arabic that read right-to-left (RTL). Normally, control text is dis-
played in the same direction as the text in its parent window. If ACO_RTLREADING is set, the
text reads in the opposite direction from the text in the parent window.

ACO_WORD_FILTER 128 ?

ACO_NOPREFIXFILTERING 256
Disable prefix filtering when displaying the auto-suggest dropdown. Always display all sug-
gestions.

Table 3: Table 3: Table 3: Table 3: IACList2 options

Setting Value Description
ACLO_NONE 0 Indicates that no enumeration should take place.
ACLO_CURRENTDIR 1 Indicates that the current directory should be enumerated.
ACLO_MYCOMPUTER 2 Indicates that My Computer should be enumerated.
ACLO_DESKTOP 4 Indicates that the Desktop Folder should be enumerated.
ACLO_FAVORITES 8 Indicates that the Favorites Folder should be enumerated.
ACLO_FILESYSONLY 16 Indicates that the file system should be enumerated.
ACLO_FILESYSDIRS 32 Indicates that the file system directories, UNC shares, and UNC servers should be enumerated.
ACLO_VIRTUALNAMESPACE 64 Indicates that the virtual namespace should be enumerated.

